Capacitor


A Jarra de Leyden foi a primeira forma de capacitor. Fora inventada na Universidade de Leyden, na Holanda por Pieter van Musschenbroek. Ela era uma jarra de vidro coberta interna e externamente, mas sem se tocarem, com metal. A cobertura interna era conectada a uma vareta que saia pelo gargalo da jarra e terminava numa bola de metal, desta forma o vidro da jarra comportava-se como o dielétrico armazenador das cargas elétricas e os metais das paredes interna e externa como as armaduras deste capacitor primitivo.

Corrente de Deslocamento
O físico James Clerk Maxwell inventou o conceito de corrente de deslocamento, dD/dt, para tornar a Lei de Ampère consistente com a conservação de carga em casos em que a carga se acumula, como por exemplo num capacitor. Ele interpretou este fenômeno como um movimento real de cargas, mesmo no vácuo, onde ele supôs que corresponderia ao movimento de cargas de um dipolo no éter. Embora essa interpretação tenha sido abandonada, a correção de Maxwell à lei de Ampere permanece válida (um campo elétrico variável produz um campo magnético).

A corrente de deslocamento deve ser incluída, por exemplo, para aplicação das Leis de Kirchhoff a um capacitor.

Definição

Os capacitores têm a função de armazenar cargas elétricas carregando-o e descarregando-o no tempo da freqüência aplicada. (de acordo com o tempo que recebe a carga). São componentes basicamente formados por duas placas metálicas separadas por um isolante chamado de dielétrico. O material de que é feito o dielétrico é quem define o nome do capacitor. Abaixo,
podemos observar tais características:



Exemplo: dielétrico de mica (capacitor de mica) e dielétrico de plástico (capacitor de poliéster).

Aplicações
Capacitores são comumente usados em fontes de energia onde elas suavizam a saída de uma onda retificada completa ou meia onda.
Por passarem sinais de Corrente Alternada, mas bloquearem Corrente Contínua, capacitores são freqüentemente usados para separar componentes de AC e DC de um sinal. Este método é conhecido como acoplamento AC.
Capacitores também são usados na correção de fator de potência. Tais capacitores freqüentemente vêm como três capacitores conectados como uma carga de três fases. Geralmente, os valores desses capacitores não são dados pela sua capacitância.


Capacitância

A propriedade que estes dispositivos têm de armazenar energia elétrica sob a forma de um campo eletrostático é chamada de capacitância ou capacidade (C) e é medida pelo quociente da quantidade de carga (Q) armazenada pela diferença de potencial ou tensão (V) que existe entre as placas:

C=Q/∆V


Pelo Sistema Internacional de Unidades (SI), um capacitor tem a capacitância de um farad (F) quando um coulomb de carga causa uma diferença de potencial de um volt (V) entre as placas. O farad é uma unidade de medida considerada muito grande para circuitos práticos, por isso, são utilizados valores de capacitâncias expressos em microfarads (μF), nanofarads (nF) ou picofarads (pF).

A equação acima é exata somente para valores de Q muito maiores que a carga do elétron (e = 1,602 × 10−19 C). Por exemplo, se uma capacitância de 1 pF fosse carregada a uma tensão de 1 µV, a equação perderia uma carga Q = 10−19 C, mas isto seria impossível já que seria menor do que a carga em um único elétron. Entretanto, as experiências e as teorias recentes sugerem a existência de cargas fracionárias. (WIKIPÉDIA)
Tipos
Capacitores de mica - São fabricados alternando-se películas de mica (silicato de alumínio) com folhas de alumínio. Sendo a mica um dielétrico muito estável e de alta resistividade, estes capacitores são utilizados em circuitos que trabalham com alta frequência (etapas osciladoras de radiofrequência). Suas capacitâncias variam de 5pF a 100 nF, apresentando elevada precisão.


Capacitores de papel - Capacitores de filtro com dielétrico de papel são volumosos e seu valor é em geral limitado a menos do que 10 m F. Eles não são polarizados e podem suportar altas tensões. Não há fuga apreciável de corrente através de um destes capacitores.


Capacitores Stiroflex - É o primeiro capacitor a utilizar o plástico como dielétrico, neste caso o poliestireno. Este material apresenta a constante dielétrica mais baixa entre os plásticos e não sofre influência das frequências altas. Do mesmo modo dos anteriores são enroladas folhas de poliestireno entre folhas de alumínio.
As principais vantagens deste tipo de capacitor são: o reduzido fator de perda, alta precisão, tolerância baixa (em torno de 0,25 %), tensões de trabalho entre 30 e 600 V.


Capacitores de polipropileno - São fabricados com duas fitas finas de plástico metalizadas numa das faces, deixando, porém, um trecho descoberto ao longo de um dos bordos, o inferior em uma das tiras, e o superior na outra. As duas tiras são enroladas uma sobre a outra, e nas bases do cilindro são fixados os terminais, de modo que ficam em contato apenas com as partes metalizadas das tiras. O conjunto é recoberto por um revestimento isolante. Estes capacitores são empregados em baixa e média freqüência e como capacitores de filtro e, às vezes, em alta freqüência. Têm a vantagem de atingir capacitâncias relativamente elevadas em tensões máximas que chegam a alcançar os 1000 V. Por outro lado, se ocorrer uma perfuração no dielétrico por excesso de tensão, o metal se evapora na área vizinha à perfuração sem que se produza um curto-circuito, evitando assim a destruição do componente.


Capacitores de poliéster - Estes componentes foram criados para substituir os capacitores de papel, tendo como principais vantagens sobre os constituídos de papel: maior resistência mecânica, não é um material higroscópico, suporta ampla margem de temperatura (-50 °C a 150 °C) com grande rigidez dielétrica.
Por apresentar variações de sua capacitância com a frequência, não são recomendados para aplicacão em dispositivos que operem em frequências superiores a MHz.
Os valores típicos são de 2pF a 10 µF com tensões entre 30 e 1000 V.


Capacitores de policarbonato - Idênticos aos de poliéster com valores típicos entre 1 nF e 10 µF com tensões de trabalho entre 60 e 1200 V.


Capacitores cerâmicos - Geralmente são constituídos de um suporte tubular de cerâmica, em cujas superfícies interna e externa são depositadas finas camadas de prata às quais são ligados os terminais através de um cabo soldado sobre o tubo. Às vezes, os terminais são enrolados diretamente sobre o tubo. O emprego deste tipo de componente varia dos circuitos de alta freqüência, com modelos compensados termicamente e com baixa tolerância, aos de baixa freqüência, como capacitores de acoplamento e de filtro. Além dos tubulares, podem ser encontrados capacitores na forma de disco e de placa quebrada ou retangular.

São os mais próximos aos capacitores ideais, pois apresentam:

Indutância parasitária praticamente nula
Fator de potência nulo
Alta constante dielétrica
Capacitâncias entre frações de pF a 1 nF
Ideais para circuitos sintonizadores.


Capacitores eletrolíticos - São aqueles que, com as mesmas dimensões, atingem maiores capacitâncias. São formados por uma tira metal recoberta por uma camada de óxido que atua como um dielétrico; sobre a camada de óxido é colocada uma tira de papel impregnado com um líquido condutor chamado eletrólito, ao qual se sobrepõe uma segunda lâmina de alumínio em contato elétrico com o papel.
Os capacitores eletrolíticos são, utilizados em circuitos em que ocorrem tensões contínuas, sobrepostas a tensões alternadas menores, onde funcionam apenas como capacitores de filtro para retificadores, de acoplamento para bloqueio de tensões contínuas, etc

Alumínio - Componentes normalmente utilizados para grandes capacitâncias (1 µF a 20.000 µF) O dielétrico consiste em uma película de óxido de alumínio (Al2O3) finíssima que se forma sobre o polo positivo , quando sobre o capacitor se aplica uma tensão contínua. As principais desvantagens deste tipo de componente são a sua elevada tolerância (chegando a 100 % maior que o valor nominal, e 10 % no sentido negativo) e o fato de ser altamente influenciado pela temperatura tanto na capacitância como na resistência de perda.


Tântalo - Os capacitores eletrolíticos de tântalo assemelham-se aos capacitores de alumínio mas, mesmo alcançando as mesmas capacitâncias, são de tamanho menor. Emprega-se o tântalo no lugar do alumínio, para a lâmina, e o eletrólito é uma pasta ou líquido. Seu emprego é aconselhável sobretudo como capacitor de acoplamento para estágios de baixas freqüências, graças ao seu baixo nível de ruído, muito inferior ao do capacitor de alumínio. Além do tipo tubular, é encontrado também em forma de "gota".

Componentes de constituição idêntica aos Capacitores eletrolíticos de alumínio. O dielétrico utilizado é o óxido de tântalo (Ta2O5) que reduz a dimensão destes capacitores em relação aos outros eletrolíticos. Estes componentes apresentam baixas tolerâncias (20 %), tem baixa dependência com a temperatura com máxima tensão de operação de 120 V, mas são mais caros.

Image and video hosting by TinyPic


Associação de capacitores



Num circuito de condensadores montados em paralelo todos estão sujeitos à mesma diferença de potencial (tensão). Para calcular a sua capacidade total (Ceq):

um diagrama com vários capacitores, lado a lado, cada qual com a ponta correspondente conectada aos mesmos fios
 C_{eq} = C_1  + C_2 + \cdots + C_n \,\!
A corrente que flui através de capacitores em série é a mesma, porém cada capacitor terá uma queda de tensão (diferença de potencial entre seus terminais) diferente. A soma das diferenças de potencial (tensão) é igual a diferença de potencial total. Para conseguir a capacitância total:

Um diagrama com vários capacitores, conectados pelas pontas, em sequência, com a mesma quantidade de corrente atravessando cada um
 \frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots +  \frac{1}{C_n}
Na associação mista de capacitores, tem-se capacitores associados em série e em paralelo. Nesse caso, o capacitor equivalente deve ser obtido, resolvendo-se o circuito em partes, conforme a sua configuração. Por isso, calcule, antes associação de capacitores em série para após efetuar o cálculo dos capacitores em paralelo.
Associação Mista-Série/Paralelo.

Image and video hosting by TinyPic
Neste caso resolve-se em primeiro lugar à parte da associação em paralelo o Ceq da parte de paralelos passa a compor um novo circuito em série.

No circuito acima ficaria assim. Ex. Parte paralela Ceq1 =10 +20 = 30pF. O novo circuito ficará assim: Ceqt = 1/C1 + 1/Ceq1 + 1/C4 = 1/20 + 1/30 + 1/6 1/Ceqt= 0,05 + 0,033 + 0,16 = 0,99 Ceqt= 1/0,99= 1,01 pF

Um comentário:

  1. A resposta do seu exercício está errada, o capacitor equivalente dá 4 pF

    ResponderExcluir